Shapefuture provides a better environment for O Level, IGCSE, AS & A Level Training.

Rising carbon dioxide levels pose a previously unrecognized threat to monarch butterflies

A new study conducted at the University of Michigan reveals a previously unrecognized threat to monarch butterflies: Mounting levels of atmospheric carbon dioxide reduce the medicinal properties of milkweed plants that protect the iconic insects from disease.

Milkweed leaves contain bitter toxins that help monarchs ward off predators and parasites, and the plant is the sole food of monarch caterpillars. In a multi-year experiment at the U-M Biological Station, researchers grew four milkweed species with varying levels of those protective compounds, which are called cardenolides. Half the plants were grown under normal carbon dioxide levels, and half of them were bathed, from dawn to dusk, in nearly twice that amount. Then the plants were fed to hundreds of monarch caterpillars.

The study showed that the most protective of the four milkweed species lost its medicinal properties when grown under elevated CO2, resulting in a steep decline in the monarch's ability to tolerate a common parasite, as well as a lifespan reduction of one week. The study looked solely at how elevated carbon dioxide levels alter plant chemistry and how those changes, in turn, affect interactions between monarchs and their parasites. It did not examine the climate-altering effects of the heat-trapping gas emitted when fossil fuels are burned.

"We discovered a previously unrecognized, indirect mechanism by which ongoing environmental change -- in this case, rising levels of atmospheric CO2 -- can act on disease in monarch butterflies," said Leslie Decker, first author of the study, which is scheduled for publication July 10 in the journal Ecology Letters. "Our results emphasize that global environmental change may influence parasite-host interactions through changes in the medicinal properties of plants," said Decker, who conducted the research for her doctoral dissertation in the U-M Department of Ecology and Evolutionary Biology. She is now a postdoctoral researcher at Stanford University.

U-M ecologist Mark Hunter, Decker's dissertation adviser and co-author of the Ecology Letters paper, said findings of the monarch study have broad implications. Many animals, including humans, use chemicals in the environment to help them control parasites and diseases. Aspirin, digitalis, Taxol and many other drugs originally came from plants. "If elevated carbon dioxide reduces the concentration of medicines in plants that monarchs use, it could be changing the concentration of drugs for all animals that self-medicate, including humans," said Hunter, who has studied monarchs at the U-M Biological Station, at the northern tip of Michigan's Lower Peninsula, for more than a decade.

News Source