Shapefuture provides a better environment for O Level, IGCSE, AS and A Level Training.

From cradle to grave: Factors that shaped evolution

Understanding the many factors that have played into shaping the biodiversity within Earth's ecosystems can be daunting. In a major step to that end, an international team of researchers built a computer simulation that takes into account many of the fundamental factors that drive evolutionary adaptation and extinction.

Their study, published on July 20th in Science, brings us closer to knowing the complex interactions between topography and climate change, and how these factors influence the evolutionary histories and biodiversity of species in natural ecosystems.

The model created by researchers at the University of Connecticut, the Federal University of Goiás in Brazil, and The Open University in the U.K., details biogeographical cradles, museums, and graves. Cradles are areas where new species form; museums, areas where species persist; and graves, areas where extinctions take place.

"We had hoped to be able to model in the simulation the most fundamental processes that shape the geography of life on Earth," says Robert Colwell, emeritus professor of ecology and evolutionary biology at the University of Connecticut, who led the research with Brazilian colleague Thiago F. Rangel, in collaboration with Neil Edwards and Philip Holden in the UK.

To find these answers, the researchers looked to the most climatically and biologically diverse continent on earth, South America, to develop and test their model. As the Andes mountain range began to develop 25 million years ago, it created a varied landscape that would give rise to a rich biodiversity, and the perfect setting to study the ecology and evolution of biodiversity.

"The Andes are the longest mountain range on Earth, and the only trans-tropical one. They sit right beside the Amazon, the planet's largest tropical rainforest and river basin. This is the reason South America has such exuberant biodiversity," says Rangel.

Speciation, or the evolution of new species from ancestral species, is a process made complicated by various factors, such as the changing climate, geographical, and topographical features. These factors can all lead to the splitting or isolation of populations and the establishment of new species. Over time, new species arise, persist, expand to new areas, or go extinct, and the reasons as to why any of those events occur are not always clear.

News Source