Shapefuture provides a better environment for O Level, IGCSE, AS and A Level Training.

Zapping substances with electrons can quickly map chemical structures

This technique could speed drug development and aid forensic investigations

SPITTING IMAGE In just a day, researchers using a new technique to identify a substance's chemical structure had mapped out the antibiotic thiostrepton (carbon atoms are gray; nitrogen, blue; oxygen, red; and sulfur, yellow). With current methods, that mapping could have taken months or years.

The one-hour photo booth has met its molecular match. By adapting a technique for determining protein structures, two independent teams have charted chemical structures of antibiotics, hormones and other compounds with unprecedented speed. Depending on the molecule, it took between 30 minutes and a day to determine structures, where traditional techniques could take months to years. The approach could help forensic chemists and sports officials identify illicit drugs and accelerate drugmakers' pursuit of new ones. The work was published online October 16 in Angewandte Chemie and October 17 at ChemRxiv.org.

"I haven't been this excited about a finding in chemistry in a long time," says organic and medicinal chemist Donna Huryn of the University of Pittsburgh who was not part of either study. "It's going to change the way everybody works." For molecular scientists, it's essential to know the atom-by-atom connectivity of what they're working with. It's how pharmaceutical companies verify drugs' composition and purity, for instance. But most techniques for discerning chemical structures are indirect. It's like having a fingerprint, an artist's sketch and dental records when what you want is a photo, explains Brian Stoltz, an organic chemist at Caltech and a coauthor of the ChemRxiv study.

The closest thing to a camera for molecules is a technique called X-ray crystallography. It involves bombarding a crystal - tiny rock candy made from many copies of one molecule stacked together - with X-rays, and calculating a structure based on how the X-rays bounce off the atoms making up the crystal. But creating big enough crystals for this approach, at least 50 micrometers on one side, can take years and doesn't always work.

News Source