Shapefuture provides a better environment for O Level, IGCSE, AS and A Level Training.

New system detects faint communications signals using the principles of quantum physics

The incoming signal (red, lower left) proceeds through a beam splitter to the photon detector, which has an attached time register (top right). The receiver sends the reference beam to the beam splitter to cancel the incoming pulse so that no light is detected. If even one photon is detected, it means that the receiver used an incorrect reference beam, which needs to be adjusted. The receiver uses exact times of photon detection to arrive at the right adjustment with fewer guesses. The combination of recorded detection times and the history of reference beam frequencies are used to find the frequency of the incoming signal. Credit: NIST

Researchers at the National Institute of Standards and Technology (NIST) have devised and demonstrated a system that could dramatically increase the performance of communications networks while enabling record-low error rates in detecting even the faintest of signals, potentially decreasing the total amount of energy required for state-of-the-art networks by a factor of 10 to 100.

The proof-of-principle system consists of a novel receiver and corresponding signal-processing technique that, unlike the methods used in today's networks, are entirely based on the properties of quantum physics and thereby capable of handling even extremely weak signals with pulses that carry many bits of data.

"We built the communication test bed using off-the-shelf components to demonstrate that quantum-measurement-enabled communication can potentially be scaled up for widespread commercial use," said Ivan Burenkov, a physicist at the Joint Quantum Institute, a research partnership between NIST and the University of Maryland. Burenkov and his colleagues report the results in Physical Review X Quantum. "Our effort shows that quantum measurements other valuable, heretofore unforeseen advantages for telecommunications leading to revolutionary improvements in channel bandwidth and energy efficiency."

News Source